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The asymmetric correlated-hopping Hubbard model is analysed perturbatively
for large values of the Coulomb interaction U. An effective Hamiltonian is
obtained up to terms of the order U−3. For d=2 and in the limit of the strong
asymmetry, the orderings of the ground states are found (confirming earlier
nonrigorous results). Their thermal and quantum stability is proved. These
results have been obtained by an application of the quantum Pirogov–Sinai
theory in the variant developed by Datta, Fernandez, Fröhlich, and Rey-Bellet.
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1. INTRODUCTION

The model considered in this paper is an asymmetric correlated-hopping
Hubbard model in a suitable range of parameters, described below. In this
model, spin one-half electrons hop on the sites of a lattice L (assumed here
as a subset of Zd) and interact only when they are on the same site.

The Hamiltonian defined on a finite subset L of Zd has the form

HL=H0, L+VL, (1)

where

H0, L=C
i ¥ L
(Uni,+ni, − −m+ni,+−m−ni, −) (2)

VL=− C
OijP; s

[ts+as(ni, −s+nj, −s)](c
†
i, sc j, s+c

†
j, sc i, s). (3)



Here c†i, s and c i, s are creation and annihilation operators of an electron of
spin s at lattice site i ¥ L, satisfying ordinary anticommutation relations.
The corresponding particle number operator is ni, s=c

†
i, sc i, s. The chemical

potentials of electrons are ms. The symbol OijP denotes an orderless pair of
nearest neighbour sites of the lattice. The constant U measures strength of
the on-site Coulomb interaction; we assume that U is positive. Parameters
ts are hopping constants (assumed to be positive) and as describe correlated
hopping.

There are important particular cases of the model characterized by the
Hamiltonian above. The most famous case is the Hubbard model (HuM), (1, 2)

where t+=t− , as=0. However, rigorous results concerning this model still
are rare. The HuM belongs to the class of ‘‘notoriously difficult’’ models in
E. Lieb’ terminology. (3)

A much more tractable model is so called Falicov–Kimball (FKM)
one; it corresponds to t+=0, t−=t, as=0. In this model, only one sort
(say, ‘‘− ’’) of particles hops, whereas the ‘‘+’’ particles are considered
as classical ones. The FKM has been proposed in ref. 4 to description of
the metal-insulator transition. Later, this model and its extensions have
been applied to other situations: as a mathematical simplification of the
Hubbard model; as a toy model of crystalization; to explain properties of
mixed-valence compounds; to describe Peierls instability and Kondo effect.
For excellent reviews, see refs. 5 and 6. In particular, one can hope that a
good understanding of this simpler model might lead to better insight into
the Hubbard model. (7)

The FKM attracts considerable attention, because it is one of the
simplest quantum lattice models—it is highly non-trivial being however still
tractable. There exist quite a large collection of rigorous results (5, 6, 8–12)

which concern mainly the ground states structure and (in some cases) low-
temperature properties.

The asymmetric Hubbard model is a model which ‘‘interpolates’’
between two limiting cases above (HuM and FKM); here, hopping con-
stants have arbitrary spin-dependent values (values of as are still set to 0).
Some authors (7) say that ‘‘this interpretation is more convenient than phy-
sical.’’ However, it seems that there is also strictly physical justification of
this model, because one can find situation where some objects such as an
effective mass (closely related to hopping constants) are explicitly spin-
dependent—see ref. 13 and references therein.

After original versions of FKM (HuM) have been postulated, also
their extensions and generalizations were considered. One of them is inclu-
sion of the correlated hopping term, called also bond-charge interaction.
Physically, presence of such term means that the hopping constant between
given two sites depends of their occupation. Justification and importance of

1128 Wojtkiewicz



such term have been stressed by numerous authors, both in the context of
Hubbard model (1, 14, 16) as well as the FK one. (15) Again, one can give the
‘‘interpolating’’ version, and one obtains the model described by (2)
and (3); it is an asymmetric correlated-hopping Hubbard model (aschHuM).

This paper is devoted to strongly asymmetric correlated-hopping Hubbard
model in a perturbative regime, i.e., for parameter values in the range
t+° t− ; |a+|° |a− |; ts, |as |° U. This paper is an extension of the pre-
vious one. (24) In ref. 24, the chFKM (i.e., the Hamiltonian (2), (3) with
t+=a+=0) has been analysed. The content of ref. 24 can be summarized
as follows: A perturbation theory in parameters t−U ,

a−
U has been applied to

the chFKM, and—as a result—the effective Hamiltonian, up to terms pro-
portional to U−3, has been obtained. It turned out to be the classical Ising-
like Hamiltonian, depending on two parameters ā=a−

t−
, h=m+−m− . In the

next step, ground states of the effective Hamiltonian have been looked for.
It was done by comparison of energies of all periodic configurations up to
N=18 sites per elementary cell (it corresponds to about 2×105 config-
urations). Most of these ground states have appeared in the ordinary
FKM (9–11) but also a new one has emerged. It turned out that all minimal-
energy configurations have no more than 5 sites per elementary cell; so it
was natural to conjecture that all they are true ground states. However, in
ref. 24 authors have not been able to prove it.

One of results of this paper is a proof of these (so far) nonrigorous
results of ref. 24. The proof is based on a formulation of the effective
Hamiltonian as an m-potential. Moreover, this result is generalized in two
directions. Namely, the thermal and quantum stability of ground states is
proved. More precisely, it means that

• it is shown that ground-states orderings are also present in non-zero
(but sufficiently low) temperatures. In the other words, the low-tempera-
ture phase diagram will be only small deformation of the zero-temperature
one;

• Moreover, the deformation of the phase diagram will be small if
we allow presence of non-zero hopping terms with t+ ] 0, a+ ] 0 in the
Hamiltonian, provided that they will be sufficiently small: t+° t− ,
|a+|° |a− |.

These facts have been proved by an application of the quantum
Pirogov–Sinai theory, developed in refs. 17–20. (It should be stressed that
there exist another version of the quantum Pirogov–Sinai theory, developed
independently in a series of papers (21, 22)).

The content of the paper is as follows. In Section 2, some basic facts
concerning lattice version of perturbation theory in the formulation, (18, 20)
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are reviewed. This scheme (valid for parameter range ts ° U, |as |° U) is
applied to the Hamiltonian (2), (3) up to terms proportional to U−3. In
such generality, this Hamiltonian is too difficult to analyse; however, when
we restrict ourselves to the case |t+|° |t− |, |a+|° |a− |, the rigorous anal-
ysis of the low-temperature properties can be performed. Such a Hamilto-
nian is the classical (Ising-like) one with small non-classical (Heisenberg-
like) perturbation. In Section 3, ground states of the classical part of the
effective Hamiltonian have been obtained. It was done by reformulating
the Hamiltonian as a sum of m-potentials (10, 18, 26) constructed by adding the
suitable zero-potentials to the initial Hamiltonian. In Section 4, general
sketch of the proof of the stability of these ground states with respect to
thermal and quantum perturbations has been presented. Section 5 contains
the conclusions, discussion on the possibilities of extensions of results and
comparison with some other papers. In Appendix A, some notions used in
Section 3, are collected. Appendix B contains the list of misprints of the
paper of ref. 20 (it is supplied because this paper refers frequently to ref. 20,
and numerous misprints there were distracting for the author).

2. PERTURBATION THEORY AND EFFECTIVE HAMILTONIAN

2.1. General Remarks

We have to do with lattice systems described by the Hamiltonian of
the form

HL(m; l)=H0, L(m)+lVL, (4)

where L … Zd, H0, L(m) is a classical operator (i.e., it can be written in
diagonal form in the basis being tensor product of site bases; tensor
product is taken over all sites belonging to L), dependent of parameter(s) m;
l is perturbation parameter (it can be one- or many-dimensional) and lVL
is a small (in a suitable natural sense) quantum operator. It is assumed that
both H0, L and VL are finite range operators. In the other words, models
under consideration are of type ‘‘classical Hamiltonian plus small quantum
perturbation.’’ Of course, this is only some subclass of quantum models;
nevertheless, it contains many interesting ones (including Hubbard-like
models in the atomic limit).

Let us assume that ground state(s) of H0 possess certain ordering(s),
which can depend of m. Our two basic questions are: (i) What will happen
if we consider the model in finite temperature? Will the ordering(s) disap-
pear at arbitrary small temperature, or will they be preserved up to some
critical temperature? (ii) What will happen under influence of the quantum
perturbation lVL ?
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Consider the influence of temperature first. It is possible to analyse
rigorously the situation when H0 has ground state of finite degeneracy (it
can depend of m). Assume that Peierls condition (described in more details
below), and certain non-degeneracy conditions on coexistence lines are ful-
filled. Then, the celebrated Pirogov–Sinai theory (26, 27) states that orderings
of ground states will also be present in positive, sufficiently small tempera-
tures. Moreover, zero-temperature phase diagram will undergo only small
deformation when we pass to non-zero temperatures.

This theorem can be generalized to the situation when the classical
system is perturbed by the small quantum operator. Then, if the above
‘‘classical’’ and also certain ‘‘quantum’’ Peierls conditions are fulfilled, it
has been proved, (17) that also in this case the stability of ground states
holds. (Related results have been established in refs. 21 and 23). In the
other words, phase diagrams will be deformed in a small degree, if the
temperature is sufficiently low and the quantum perturbation is sufficiently
small.

One can say that sufficiently small thermal perturbations of finite-
degeneracy classical systems don’t destroy orderings of ground states.
However, the situation changes dramatically when the classical system
exhibits infinite degeneracy. (Such opportunity happens quite frequently. It
takes place, for instance, for certain important regions of the Hamiltonian
(2), corresponding to FKM and HuM in atomic limit.) In such situations,
both thermal and quantum perturbations can lead to very complicated
phenomena, which full treatment hasn’t been worked out so far. However,
some particular cases are tractable. One of such situations is that the
degeneracy can be lifted by perturbation, and some group of states with
finite degeneracy emerges. In this case, one can further analyse behaviour of
these states, i.e., their behaviour in further orders of perturbation theory
and under thermal perturbation. If we are interested only in the low-tem-
perature behaviour of the system, then it turns out that one should know
details of only ground state(s) and low-energy ones, so the full diago-
nalization of the Hamiltonian is not necessary. The second aspect of matter
is necessity of writing of the Hamiltonian in the form of local interactions,
because we must control the convergence of perturbation theory in ther-
modynamic limit, as we deal with lattice systems.

Perturbation theory adapted to these goals has been developed in
refs. 18 and 20 and we present their main points below. (It should be noted
that parallel results have been obtained in ref. 22. Results in refs. 18–20
and in ref. 22 are—in general features—physically equivalent, although
they have been obtained by different approaches. The former method rely
on perturbative diagonalization of the Hamiltonian in low-energy part first,
and on the application (if possible) of the Pirogov–Sinai theory to the
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resulting effective Hamiltonian as a next step. The approach presented in
the latter paper can be viewed as a certain generalization of methods
developed in ref. 33, which has been devised for examining low-tempera-
ture properties of systems with infinite ground-state degeneracy, using the
notions of dominant ground states and restricted ensembles. This general-
ization can be viewed as taking into account in one step not only thermal
perturbation but also the quantum one. In author’s opinion, the DFF
approach is easier to use, whereas the Kotecky et al. approach seems to be
able to treat larger class of models—especially such ones where degeneracy
is not lifted by the quantum perturbation alone. However, this is a matter
of further development of this theory.)

Summarizing, there are two basic steps in the whole procedure. (1)
Diagonalize the Hamiltonian in the low-energy part up to nth order, and
write the result out as a sum of local objects. This way, the Hamiltonian
is reformulated as a block-diagonal nth order effective Hamiltonian plus a
small non-diagonal correction of the order n+1. This is done in this paper
in this section below. (2) If nth order effective Hamiltonian is a classical
one, then one should determine its ground states. If the ‘‘classical’’ and
‘‘quantum’’ Peierls conditions are fulfilled, then stability of these ground
states follows. It is a content of the following two sections.

2.2. Perturbation Theory for aschHuM

We will consider the system defined on a finite subset L of the lattice Zd.
Let us assume that on every lattice site i ¥ Zd we have some Hilbert space Hi;
we assume that all these spaces Hi are isomorphic. The Hilbert space of the
whole system HL is a tensor product: HL=êi ¥ L Hi.

Assume that we analyse systems in such a form that the Hamiltonian
is the sum of one-site classical operators and the sum of two-site operators:

HL=H0, L+VL — C
i ¥ L
Fi+ C

X … L

QX (5)

where Fi is a classical potential defined on site i. We assume that energies
of collections of ground states and excited states of Fi are divided by suffi-
ciently large energy gap (in the case of aschHuM it means that U is suffi-
ciently large). X is a pair of n.n. sites; QX is a small quantum (in the norm
sense) operator.

Remark. The procedure of generation of effective Hamiltonians and
their analysis has been developed for much more general case, i.e., Q and F
are finite-range operators (or even infinite-range ones, but exponentially
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falling with distance). However, in such a case the formulas are much more
complicated and we will not reproduce them in full generality. Interested
reader can find them in ref. 18.

Now, we restrict ourselves to the system (2), (3). Let us begin our
analysis from the classical part of the Hamiltonian, which is well known
(Fig. 1; ref. 20). Every Hi is spanned by the states: |ni,+, ni, −P or, explicitly,
|0, 0P, |1, 0P, |0, 1P, and |1, 1P. The corresponding energies are: 0; −m+;
−m− ; U−m+−m− . The phase diagram consist of the following four
regions. In region I, defined by

I: m+ < 0, m− < 0 (6)

all sites are empty. In two twin regions II+, II− given by conditions:

II+: m+ > 0, m+ > m− , m− < U (7)

(for II− , one should interchange the subscripts+ and −) all sites are in the
|1, 0P (corresp. |0, 1P) state. In the region III, given by:

III: m+ > U, m− > U (8)

all sites are doubly occupied.
We choose the states |1, 0P and |0, 1P as ground states, which means

that we analyse the phase diagram in some subset of the region II+ 2 II−
(i.e., the shaded region on Fig. 1). The most interesting situation takes

ε

ε

+µ

0 -εε µ

|1,0> |1,1>

|0,1>|0,0>

U- 

U

U-  U

Fig. 1. Phase diagram of the nonperturbed Hamiltonian (2).
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place in the neighbourhood of the m+=m− line between regions II+ and II− ,
where the macroscopic degeneracy is observed.

We will need the projection operator on ground states:

P0i=(ni,+−ni, −)
2. (9)

The effective Hamiltonian has been derived up to the fourth order
along the lines in ref. 20, Section 3. Their adaptation to our case turned out
to be straightforward, so we reproduce here only the results.

The effective Hamiltonian is a sum of three parts.

H (4)0 =h
(0)
0 +h

(2)
0 +h

(4)
0 . (10)

The first of them is the nonperturbed potential:

h (0)0 =C
i ¥ L
P0iFiP

0
i . (11)

The remaining parts contain products of creation and annihilation opera-
tors. It is convenient to express them in spin variables, i.e., certain bilinear
combinations of creation and annihilation operators. We have:

SF i := C
a, aŒ=+, −

c†i, asFa, aŒc i, aŒ (12)

where sF — 1
2 (s1, s2, s3) and s1, s2, s3 are standard Pauli matrices. It is

convenient to use

S3i=
1
2 (ni,+−ni, −) (13)

and

S ±i =S
1
i ±iS

2
i=c

†
i, ±c i, + . (14)

The results below have been obtained by rather straightforward but lengthy
and technical calculations with the aid of programs to symbolic compu-
tations. I am very indebted for R. Lemański for permission to use his
programme for these purposes. In formulas below we denote:

t̃+ :=t++a+, t̃− :=t−+a− . (15)

The second term in (10) is a sum of two-body interactions:

h (2)0 = C
Oi, jP … L

h (2)0; ij, (16)
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where

h (2)0; ij=
t̃ 2++t̃

2
−

2U
(4S3i S

3
j −P

0
iP
0
j )+
t̃+t̃−
U
(S1i S

1
j+S

2
i S
2
j ). (17)

This expression is a Hamiltonian of the anisotropic Heisenberg model. It
has a structure identical as for asHuM (see ref. 20). The correlated hopping
manifests itself here only by the change (‘‘renormalisation’’) of coupling
constants. However, in the next nonvanishing order, qualitatively new
terms emerge.

The third term in (10) is the most complicated one. It is more than one
page long; it can be viewed as anisotropic generalized Heisenberg model
(with two-, three-, and four-body interactions). In its general form, it is too
difficult to analyse (at least for the author): still little is known rigorously
for its simpler version, i.e., the ordinary Heisenberg model.

But it is possible to obtain a rigorous information on ground states in
the FK-like regime, i.e., for |a+|° |a− |, t+° t− . It will be subject of the
following two sections. The only information we must know about the
general form, is a smallness of certain matrix elements of this operator. For
this reason, the formula will be not reproduced here (interested reader can
obtain it from the author upon request).

3. GROUND STATES OF EFFECTIVE HAMILTONIAN

3.1. FK-Like Limit of Effective Hamiltonian

In this section ground states of strongly anisotropic limit of the
effective Hamiltonian (10) is performed. One can consider it as a weak
(quantum) perturbation of the purely classical chFKM. It is necessary to
determine ground states and their phase diagram of the chFKM first. It
has been (nonrigorously) done in ref. 24 and now proofs will be supplied.

First, let us remind the Hamiltonian for chFKM in fourth order
of perturbation theory. Our analysis covers the half-filled case, i.e.,
;i (ni,++ni, −)=|L|. If we take the following assumptions in the expres-
sion (10): (i) we consider the half-filled case, i.e., projections can be
skipped; (ii) dimension of the lattice is equal to 2; (iii) t+=a+=0, then we
obtain the following effective Hamiltonian for the chFKM: (24)

H (4)L, eff=h̃ C
i
si+J2 C

d(i, j)=1
sisj+J

−

2 C
d(i, j)=`2

sisj+J
'

2 C
d(i, j)=2

sisj

+J3, s C
S3, ijk

sisjsk+J3, b C
B3, ijk

sisjsk+J4 C
P4, ijkl

sisjsksl+J0 C
P4, ijkl

1 (18)
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where h=m+−m− ; h̃=(h−20Uay3); y=t̃−/U; a=a−/U; J2=U(2y2−18y4);
J −2=U(6y

4+8a2y2); J'2=U(4y
4+2a2y2); J3, s=8Uay3; J3, b=16Uay3;

J4=40Uy4; J0=U(3y4−10a2y2); B3, ijk, ‘‘bent’’ triples of spins i, j, k (i.e.,
the angle between bonds ij and jk is p/2); S3, ijk, ‘‘straight’’ triples; P4, ijkl is
a 2×2 square plaquette on the lattice. This Hamiltonian is an Ising-like
Hamiltonian with competing antiferromagnetic interactions, and the struc-
ture of ground states can be very complicated; this situation happens for
instance in the case of the ANNNI model. (25) In our case, fortunately, the
structure of ground states turned out to be rich but amenable to rigorous
analysis.

3.2. Determination of Ground States

Ground states of the Hamiltonian (18) will be determined by suitable
modification of methods borrowed from papers. (10, 11) They rely on rewrit-
ing of the Hamiltonian as a sum of m-potentials (for definition, see refs. 10,
11, and 26; it is reminded in the Appendix). If a given potential is an
m-potential, then we are in very lucky situation, as the local minimality of
energy (i.e., minimality on a plaquette) implies the global minimality on the
whole lattice.

Let us rewrite the Hamiltonian (18) as a sum of potentials over
(square) plaquettes 3×3:

H (4)L, eff= C
p … L

Hp, (19)

where p is a 3×3 plaquette and

Hp=
h̃
9
C
i
si+
J2
6

C
d(i, j)=1

sisj+
J −2
4

C
d(i, j)=`2

sisj+
J'2
3

C
d(i, j)=2

sisj

+
J3, s
3

C
S3, ijk

sisjsk+
J3, b
4

C
B3, ijk

sisjsk+
J4
4

C
P4, ijkl

sisjsksl+
J0
4

C
P4, ijkl

1. (20)

In expression above the summation is performed over all objects (single
sites, pairs, triples, plaquettes) belonging to the plaquette p.

It turns out that the effective Hamiltonian for chFKM neither in the
form (18) nor in (19), (20) is an m-potential (except situations where we
have empty or full configurations, i.e., large h̃ fields). In order to overcome
this difficulty, Kennedy (10) has proposed to pass from original Hamiltonian
to the new equivalent one, which is an m-potential. The trick relies on
addition of suitably chosen zero-potential to the original Hamiltonian;
zero-potential is such a potential which is non-trivial and has zero-energy
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Fig. 2. Enumeration of spins on the 3×3 plaquette.

independently of configuration. Let us stress that this is a global condition,
i.e., such that the total energy of the whole lattice L is zero (assuming
periodic boundary condition); but locally, i.e., on the given plaquette, the
energy—as a rule—is different from zero.

We will look for zero-potentials in a form analogous as in refs. 10
and 11. Let us order spin on a 3×3 plaquette as in Fig. 2.

Let us introduce the following potentials defined on these plaquettes:

k1=−s2−s4−s6−s8+4s5, (21)

k2=−s1−s3−s7−s9+4s5, (22)

k3=−s1s3+2s4s6−s7s9−s1s7+2s2s8−s3s9, (23)

k4=−s2s4−s2s6−s4s8−s6s8+s1s5+s3s5+s5s7+s5s9. (24)

It is easy to check that k1,..., k4 are zero-potentials. This implies that also
Y0 below is a zero-potential:

Y0=U 1 h̃ C
4

i=1
A iki+y2 C

4

i=1
Biki+y4 C

4

i=1
Ciki+ay3 C

4

i=1
Diki+a2y2 C

4

i=1
Fiki 2

(25)

for arbitrary collection A i,..., Fi. We will use this freedom to find such
values of these constants that Hp+Y0 is an m-potential.

Let us remind the phase diagram from ref. 24 (Figs. 3 and 4), whose
validity we will prove now. We will assume the following range of the a
parameter: −1 [ ā [ 1, where ā :=a−/t− . This is not a principal limitation
and results can be obtained also outside this region, but we limited our-
selves to this parameter set, because the experimental values of |ā| are less
than 1—usually |ā| is of the order 0.1–0.3 (see refs. 1 and 14).

There are nine phases present on the phase diagram. Five of them
(0, I, II, III, and ‘‘cb’’) are the same as for the ordinary FK model and
have their counterparts (0Œ, IŒ, IIŒ, IIIŒ; cb is the same as cbŒ) obtained by
interchange the full and empty sites. Moreover there exist also the new
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h

a_ / t

0

-1 a_*-- ≈ -0.7735 a+*
-- ≈ -0.3694

0

0’

cb

IV

I
II

III

II

III

I

III’

II’

I’

Fig. 3. Phase diagram of the fourth-order Hamiltonian (18). The phase diagram is
deformed, i.e., only its topological structure is presented. The region where the ‘‘cb’’ phase
appears possess the height of the order t̃ 2−/U, whereas other phases occupy regions with
height of the order t̃ 4−/U

3. The h parameter is a difference of chemical potentials m+−m− .

phase denoted as IV, whereas IVŒ does not appear. Orderings are shown on
Fig. 4. Energies of these phases are given by the formulas:

E0=h+U(4y2+24y4+60ay3+20a2y2) (26)

EI=
3
5 h+U(

4
5 y
2− 1365 y

4−28ay3+4a2y2) (27)

EII=
1
2 h+U(0y

2−36y4−42ay3+2a2y2) (28)

EIII=
1
3 h+U(−

4
3 y
2+0y4−44ay3+4a2y2) (29)

Ecb=0h+U(−4y2+96y4+0ay3+20a2y2). (30)

The energies for primed phases are obtained by the sign change in
coefficients at h and ay3. We have also

EIV=
1
2 h+U(0y

2−32y4−34ay3+4a2y2). (31)
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Fig. 4. Orderings appearing in the fourth-order Hamiltonian.

We will denote the line dividing ith and jth phases as h i/j. Equations
for these lines are obtained from the condition of equality of energies of ith
and jth phases. Explicit expressions for h i/j are as follows:

h0/I=U(−8y2−128y4−220ay3−40a2y2) (32)

hI/II=U(−8y2−88y4−140ay3−20a2y2) (33)

hII/III=U(−8y2+216y4−12ay3+12a2y2) (34)

hIII/cb=U(−8y2+288y4+132ay3+48a2y2). (35)

Equations for lines h iŒ/jŒ are obtained from those defining lines h i/j by
reversing signs at all terms except those proportional to ay3. Moreover

h0/IV=U(−8y2−112y4−188ay3−32a2y2) (36)

hIV/cb=U(−8y2+256y4+68ay3+32a2y2). (37)

These equations have no primed counterparts, as the phase IVŒ does not
appear. Notice that lines: h0Œ/IŒ, hIŒ/IIŒ, hIIŒ/IIIŒ, hIIIŒ/cb appear for all values
of ā, but the lines h0/IV and hIV/cb appear only if the condition

ā ¥ [āg− , ā
g
+] (38)

Asymmetric Correlated-Hopping Hubbard Model 1139



is fulfilled. Similarly, h0/I, hI/II, hII/III, hIII/cb appear values of ā fulfilling

−1 [ ā [ āg− , āg+ [ ā [ 1 (39)

(two branches). In formulas above

āg−=−
4+`2

7
% −0.773459; āg+=−

4−`2

7
% −0.369398.

For these values of ā, energies of corresponding phases on the phase
diagram (two coexisting phases on lines, or four coexisting phases on
points) are equal.

It is clear that every lattice configuration can be built from plaquette
configurations, presented on Fig. 5, and twin configurations resulting from
the change of spins ‘‘+’’ onto ‘‘−’’ and vice versa (configuration 16Œ or 19Œ
will not appear, because 16 is a twin of 19). Only configurations without
two ions as nearest neighbours are considered due to antiferromagneticity
of interactions in the second-order perturbation theory.

To proceed further, we must calculate energies of all possible plaquet-
tes, i.e., values of functions (20), (25) on all plaquette configurations.
Notice that we need all plaquettes, i.e., both those presented on Fig. 5 and
their twins. It is so because the Hamiltonian is not invariant with respect to
the change hQ −h. Such a computation is straightforward, but the results
are lengthy and will be not reproduced here. After that, one tries to choose
coefficients A i, Bi, Ci, Di, Fi (i=1,..., 4) in such a manner that the sum
Hp+Y0 is an m-potential. Author couldn’t find a single expression for Y0

in a whole phase diagram. But it was possible to find Y0 in all regions of

Fig. 5. Plaquette configurations.
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phase diagram occupied by a single phase. This way, the covering of the
whole phase diagram has been achieved.

3.3. Main Result

In this section, results concerning ground states of the effective
Hamiltonian (20) in certain regions of phase diagram are formulated and
proved.

Let us divide the parameter space of the phase diagram into regions:
R i (i=0, I, II, III; 0Œ, IŒ, IIŒ, IIIŒ; IV, cb) occupied by corresponding phases,
according to Fig. 3. Moreover, we need to divide R0 as: R0=R0, 1 2 R0, 2,
where R0, 1 is defined by the condition: h < h0/I and Eq. (39), whereas R0, 2
by: h < h0/IV and Eq. (38). Similarly, Rcb=R

−
cb, 1 2 R−cb, 2 2 R+cb, where R−cb, 1

is defined by the condition: hIII/cb < h [ 0 and Eq. (39); R−cb, 2—by:
hIV/cb < h [ 0 and Eq. (38); R+cb—by: 0 [ h < hIV/cb.

Theorem 1. For every subregion R i of the phase diagram, and for
values of coefficients for every R i, given in Table I, the potential: H̃ ip=
Hp+Y0; i is an m-potential. Plaquette configurations of minimal energy in
every region R i (open sets and lines) are listed in Table II. It leads to lattice
configurations for every R i as in Fig. 4.

The set of plaquettes which minimize energy on a subset S of phase
diagram will be denoted by Emin(S).

The strategy of proof is as follows:

1. First we analyse situation on boundaries h i/j dividing regions
occupied by particular phases. Inserting values of A i, Bi, Ci, Di, Fi from
Table I into an expression for Y0, one obtains plaquette configurations
minimizing energy. This way, the set Emin(S) is determined in the case when
S is a line.

2. Having Emin(S) on boundaries h i/j and hj/k, one determines those
plaquette configurations which minimize energy inside the region Rj. This
last fact can be checked by looking at coefficient at h; from minimality of
energy on boundaries of Rj, the minimality of energies inside the region
follows immediately.

3. After we have determined the set of plaquette configurations with
minimal energy, we are looking for lattice configurations, which can be
build from allowed plaquettes.

The following fact is helpful when one determines Emin(S) in the case
when S is a line h i/j. Namely, it turns out that on lines: h0/I, hI/II, hII/III,
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Table II. The Set of Minimal Energy Plaquettes and Corresponding Lattice

Configurations in Every Region of Phase Diagram. The Characterization

of the Line l ±
III/IV Is: a=ag

± , h0/I(a
g
± )<h<h III/cb(ag

± )

The set of plaquettes Configurations which can be build
Region S of minimal energy, Emin(S) from minimal-energy plaquettes

h0/I {0, 1, 2, 3, 6, 7, 8} . degeneracy
R0 {0} 0
hI/II {1, 6, 7, 8, 15} . degeneracy
RI {1, 6, 7, 8} I
hII/III {1, 4, 7, 11, 13, 15} . degeneracy
RII {1, 7, 15} II
hIII/cb {1, 4, 10, 11, 12, 13, 16, 17, 19} . degeneracy
RIII {1, 4, 11, 13} III
Rcb {16, 19} cb
h0/IV {0, 1, 7, 18} 0, IV
hIV/cb {1, 7, 16, 18, 19} IV, cb
RIV {1, 7, 18} IV
l ±III/IV {1, 6, 7, 15, 18} . degeneracy

hIII/cb, an energy of every ith (non-primed) plaquette configuration has the
form: E(i)=E0+c1(i) B(a, y)+c2(i) y4, where c1(i), c2(i) are either 0 or
positive numbers and

B(a, y)=2y4+4ay3+a2y2 (40)

(all energies are calculated for the Hamiltonian H̃). It is easy to see that
B(a, y) is greater than zero exactly for the condition (39), which implies
that minimal energy plaquettes are those for which c1(i)=c2(i)=0.

The situation is not so evident for lines: h0/IV, hIV/cb. But still it is
simple: the energy of every plaquette is in one of the following two forms:
either E(i)=E0+d1(i) B(a, y) with di being 0 or negative number, or E(i)=
E0+y2N(a, y), where N(a, y) is positively defined quadratic form in a, y.
Then, minimal energy plaquettes correspond to the first possibility with
d1(i)=0.

One can also ask the following question: Expressions for Y0i are
determined for regions R i. Then, on the line h i/j one can take the potential
either from R i or from Rj. Which potential one should take? It turns out
that the set of minimal-energy plaquettes Emin(h i/j) does not depend of the
choice of potential. This fact holds for all boundary lines.

In Table II, we list result of this procedure (i.e., sets Emin(S)) in every
region of phase diagram.
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For primed configurations, the reasoning is identical with one excep-
tion. Namely, energies of primed configurations are of the form: EŒ(i)=
E −0+c

−

1(i) BŒ(a, y)+c
−

2(i) y
4, where

BŒ(a, y)=2y4−4ay3+a2y2. (41)

One can check that BŒ(a, y) is greater than zero for all a ¥ [−1, 1], which
implies that for h̃ > 0 all ground states are FK-like (10) and there is no new
phase IVŒ.

This way, we have completed determination of phase diagram for
ground states for the Hamiltonian (18).

One can ask the question about a relation of the diagram above and
low-temperature phase diagram of the strongly aschHuM. The answer is
that these diagrams are in certain sense very similar. More precise descrip-
tion and statements will be given in the next section.

4. STABILITY OF GROUND STATES OF THE ASCHHUM

4.1. Quantum Pirogov–Sinai Method

Let us resume what has been achieved so far. We started from the
Hamiltonian of the form

HL(l)=H0; L+lVL, (42)

where H0; L, VL are as in (2), (3), respectively. (We skip the L index below.)
After certain unitary transformation, we have obtained the effective
Hamiltonian for strongly aschHuM. It turned out to be of the form:

H(l)=H(n)0 (l)+Q
(n)(l), (43)

where H (n)0 (l) is the classical Hamiltonian (effective Hamiltonian for
chFKM up to terms proportional to U−(n−1); we consider here n=2 and
n=4) and Q (n)(l) are small quantum corrections coming from both ion
hopping terms and from higher order terms (of the order l (n+1)) in pertur-
bation theory for the chFKM. Moreover, it turns out that the classical
Peierls condition for the Hamiltonian (18) (or, more precisely, for equiva-
lent interaction) holds.

Then, one can follow the strategy described in refs. 18 and 20 and
sketched in Section 2.1: The Hamiltonian H (n)0 (l) is treated as a classical
Hamiltonian with ground states of finite degeneracy, and Q (n)(l) is its
quantum perturbation. Then, one can apply the results from ref. 17 to
H (n)0 (l), thus establishing stability of its ground states with respect to
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thermal and quantum perturbations. It has been done in refs. 18 and 20.
This procedure can be applied in arbitrary order of perturbation theory (we
consider here orders 2 and 4).

All this machinery can be applied provided certain conditions imposed
on H (n)0 (l) and the quantum part Q (n)(l) are fulfilled (this last group of
conditions can be translated back to—easier to verify—conditions for
quantum part of the starting Hamiltonian). These conditions are as
follows: (i) The Peierls condition for classical model. Roughly speaking, it
tells that the energy of an excitation is proportional to its area; for the
formal definition, see refs. 17, 18, and 26. (ii) Two-level Peierls condition,
described in Section 5.3 of ref. 18. (iii) Some ‘‘smallness’’ conditions
imposed on quantum part, (20) Section 5.3.

After the collection of ground states w1,..., wk of the classical effective
Hamiltonian in nth order of perturbation theory H (n)0 (l) is determined, one
can find certain objects called truncated free energies (20) f −1,..., f

−

k. Each f −i
is associated to the ground state wi. Truncated free energies (constructed
from ground states using cluster expansion procedure) are very important
objects: One can think on them as objects, emerging from ground states
after switching the quantum perturbation on and increasing temperature.
As the perturbation is small and temperature is low, there is one-to-one
correspondence between ground states and truncated free energies.

4.2. Stability of the Phase Diagram of the Strongly aschHuM

4.2.1. Phase Diagram in Order 0

The Hamiltonian in the zeroth order is given by (2). Its phase diagram
is common for FKM as well as HuM and it is well known (see, for
instance, ref. 20). Its most important features have been reminded in Sec-
tion 2.2. Its phase diagram is reproduced on Fig. 1. Each region: I, II+,
II− , III is occupied by one phase. These regions are determined by values
of chemical potentials, given by inequalities (6)–(8). Occupation of every
lattice site in every such region is |0P, |+P, |−P, |±P, respectively.

It is obvious that inside of every region, we have uniqueness of the
ground state and their stability, provided that the smallness conditions for
temperature and quantum perturbation are fulfilled. Note however that as
we approach to lines between particular regions (coexistence lines), then the
Peierls constants tend to zero, which implies that region of parameters b, l
for which stability holds shrinks to zero.

4.2.2. Phase Diagram in Order 2

An effective Hamiltonian in the second order of perturbation theory
has been obtained in Sections 2.2 and 3.1. Their classical part is the same as
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the antiferromagnetic Ising model in a magnetic field (see the formulas (16),
(17), and (18)).

Ground state of such a Hamiltonian above are (provided that t̃− —
t−+a− ] 0) depending on values of h: full configuration, empty configura-
tion and a checkerboard configuration plus its translation. The two-level
Peierls condition is fulfilled if

8
t̃ 2−
U
±h+O 1 t̃

4
−

U3
2 > 0 (44)

that is, within the whole parameter space except for bands of height of
order t̃ 4−/U

3 around the lines h=±8t̃ 2−/U. One can check it analogously
as in ref. 20, Section 5.2.

Conditions for the quantum perturbation (i.e., ionic jump) are fulfilled
if

t̃+
t̃−
,
t̃−
U
< E0 (45)

where E0 is a small number, which tends to zero when one approaches the
boundary line.

On the line h=±8t̃ 2−/U we have infinite degeneracy of ground states.
For this reason, in this order of perturbation theory we cannot establish
the structure of ground states on this line and in its neighborhood.
However, we can get certain information in the next order of perturbation
theory.

4.2.3. Phase Diagram in Order 4

In fourth order of perturbation theory, the classical Hamiltonian is
given by (18). Its ground states have been determined in Section 3. In order
to establish their stability, the Peierls conditions should be checked. This
can be done immediately. An equivalent method is to employ theorem
from ref. 28: Any finite range m-potential with a finite number of periodic
ground states satisfies the Peierls condition. Then, the classical part satisfies
both Peierls conditions. This statement holds in points of phase diagram
with exclusion of vicinities of coexistence lines h i/j (see Eqs. (32)–(37)) of
width t̃ 6−/U

5.
The smallness condition for the quantum part as well as the stability

criterion are fulfilled for b sufficiently large and t̃− satisfying

t̃+
t̃−
,
t̃−
U
< Ẽ̃0 (46)

1146 Wojtkiewicz



h

a_ / t

0

-1 a_*-- ≈ -0.7735 a+*
-- ≈ -0.3694

0
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I
II

III
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III

I

III’

II’

I’

Fig. 6. Deformation of the ground-state phase diagram of the Hamiltonian (18) (see Fig. 3)
under thermal and quantum perturbations. Lines: cb/IV and IV/0 will undergo only small
deformation. Other phase boundaries will undergo more serious changes (splitting,
appearance of new orderings), which can be investigated in next orders of perturbation theory.
These regions of ‘‘terra incognita’’ have height of the order t̃ 6−/U

5 and are displayed as thick
shaded lines.

(it can be checked analogously as in ref. 20, Section 5.3), i.e., the condition
analogous to (45), but with smaller constant. All these arguments imply the
stability of ground states (illustrated on Fig. 4) on all parameter set—
except excluded stripes of height O(t̃ 6−/U

5) around coexistence lines of
infinite degeneracy (this is illustrated on Fig. 6). This stability concerns
temperature and small ion hopping.

Most of the coexistence lines on the phase diagram are lines of infinite
degeneracy. But lines: 0/IV and IV/cb are exceptions: they are coexistence
lines of only two configurations. It turns out that they will not split under
perturbations and undergo only small deformation. This fact can be proved
using the quantum Pirogov–Sinai theory with parameters, developed in
ref. 18, Chap. 5.3. Detailed discussion, formulations and proofs can be
found in ref. 18. The conditions which must be fulfilled are as follows:
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(i) The Gibbs phase rule for 0-temperature phase diagram; (ii) Non-degen-
eracy and differentiability conditions for 0-temperature phase diagram;
(iii) Estimations for smallness of derivatives of the quantum operator over
parameters; (iv) the Peierls condition (with the parameter-independent
constant) in the neighborhood of the coexistence line. All these conditions
can be checked by straightforward calculation. As a result, we obtain that
lines 0/IV and IV/cb will undergo only small deformation under thermal or
quantum perturbation.

One can ask also further questions: It has been established that the
orderings of ground states will be preserved under small perturbations
(both thermal and quantum). What can be said about states? It turns out
that also states of both models will share certain similarities: (20) A low-
temperature equilibrium state can be visualized as a ‘‘sea’’ being a corre-
sponding ground state of the classical Hamiltonian plus the fluctuatios
represented by contours. Thus expectation in such a state differ little from
expectation in the associated ground state of the classical Hamiltonian.

5. CONCLUSIONS AND OPEN PROBLEMS

In this paper, the structure of ground states for chFKM, established
elsewhere, (24) has been proved. This result has been achieved by construct-
ing suitable form of m-potential, similarly as in refs. 10 and 11. The second
result is that these ground states are stable against increasing of the tem-
perature and presence of quantum perturbations, such as a small ion
hopping. This way, the low-temperature phase diagram of strongly asym-
metric correlated-hopping Hubbard model has been obtained. These results
have emerged as application of quantum Pirogov–Sinai technique, devel-
oped in refs. 17–20.

Related to the subject this work is the paper of ref. 29, where authors
consider the correlated-hopping spinless 2d FK model nonperturbatively
but numerically; they report results for finite systems up to 64 lattice sites.
Authors claim that the segregation phenomenon have been observed
(absent in our study). However, their results are obtained for relatively
small values of U (up to U=7) and it seems that such values of U are too
small to fit the perturbative treatment presented in this paper.

It would be tempting to gain information on various generalizations
of the Falicov–Kimball models, such as FK model with spin. (30) There is a
significant difference between these two sorts of the model. For the spinless
model, we have only two ground states (outside coexistence lines). For the
model with spin, we have a macroscopic degeneracy (at least at zero exter-
nal magnetic field). This is the reason that it was possible to obtain only
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the effective Hamiltonian, (31) but nothing rigorous can be said about sta-
bility of these states, as the one of fundamental assumptions of the Pirogov–
Sinai theory (both classical and quantum) is finite degeneracy of ground
states. Notice, however, that in our case this degeneracy is in some sense
‘‘trivial,’’ since it is lifted neither by thermal nor by quantum perturbations
(provided it is independent of heavy electron spin). Quite a similar situa-
tion was reported in ref. 32, so we hope that the method used in this paper
will be applicable in our situation as well. So we expect that the ground
state orderings of the spin 1/2 FK model will be preserved for sufficiently
low temperatures.

APPENDIX A: GROUND STATES, m-POTENTIALS

Basic notions concerning classical lattice models and quantum per-
turbations thereof, such as defect set, contour, classical and quantum Peierls
conditions, stability of phases which have been used in the paper, can be
found in refs. 17 and 18 (see also ref. 26). Here only definitions concerned
to Section 3 are given.

Configurations. Let us consider a system defined on L … Zd,
|L|=N. On every lattice site i we have some finite set called classical
spin Si. It will be assumed that all Si are isomorphic. A configuration is an
element of WN=SN —×i ¥ L Si.

Classical Hamiltonian. The Hamiltonian HL is a function defined
on WN. Usually Hamiltonian is defined as a sum of potentials, i.e., func-
tions defined on subsets of L: HL=;B … L FB. Usually one imposes restric-
tions such that potentials are finite-range ones, i.e., such that |B| [M,
M finite. It is also assumed that potentials are translation invariant.

m-Potential. Now, consider the system on an infinite lattice Zd.
Assume that sets Ba (i.e., potential supports) are translation of a fixed
plaquette B by a lattice vector a: Ba=yaB, where ya is an operator of such
translation. We say that the function FB is an m-potential, if there exist
configuration (perhaps, non-unique) w0 ¥ WN with the following properties:
(i) For every plaquette Ba, the ‘‘plaquette energies,’’ i.e., values of the
Hamiltonian calculated on the plaquette Ba: FBa (w

0) are all equal; (ii) For
every another configuration w ¥ WN, the condition: FBa (w

0) [ FBa (w) is
fulfilled.

Ground States of the Classical Hamiltonian. If there exist such
configuration w0 ¥ WN as above, then we call it the ground state of the
Hamiltonian.
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The property of the potential to be an m-potential can be reformulated
as follows. If a given potential is an m-potential, then the local minimality
of energy (i.e., minimality on a plaquette) implies the global minimality on
the whole lattice. The property that a potential is an m-potential is very
important one, as it replaces searching of ground states of the infinite
lattice by looking for the minima on a finite set. Unfortunately, some given
potential possess this property only exceptionally. A method to avoid this
obstacle is to find—for a given potential F—an equivalent potential FŒ,
such that FŒ is an m-potential. However, in general it is difficult task.

APPENDIX B: MISPRINTS IN REF. 20

1. Formulas (2.72) and (2.73) should appear as:

V3=ad2 S1 1
V00

2
+
VR

2
+
2V01

3!
2 (2.72)

V4=ad3 S1 1
V00

3!
+
VR

3!
+
3V01

4!
2+ad S2 1V002 +VR2+

V012
2
2 (2.73)

(compare ref. 18, (5.49)).
2. The formula (3.7) should appear as

QX — QX(t¯
)=Q[xy](t¯

)+Q[yx](t¯
).

3. p. 581, an expression in the line below the formula (3.18) should
be

V00X1 2X2=
1
2 [ad S1 BX1 (Q

01
BX2
)+ad S1 BX2 (Q

01
BX1
)]00.

4. p. 583, an expression in third line below the formula (3.30) should
be

t±b=t±b=t.

5. p. 586, Table II: In the formula for effective Hamiltonian for the
Falicov–Kimball model, there should appear a term: t

4

2U P
0
{xyzw}.
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6. J. Jȩdrzejewski and R. Lemański, Acta Phys. Polon. B 32:3243 (2001).
7. J. K. Freericks, E. H. Lieb, and D. Ueltschi, Comm. Math. Phys. 227:243 (2002).
8. T. Kennedy and E. H. Lieb, Phys. A 138:320 (1986).
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32. J. Jȩdrzejewski, Z. Phys. B, Condens. Matter 59:325 (1985); Physica A 205:702 (1994).
33. J. Bricmont and J. Slawny, J. Stat. Phys. 54:89 (1989).

Asymmetric Correlated-Hopping Hubbard Model 1151


	1. INTRODUCTION
	2. PERTURBATION THEORY AND EFFECTIVE HAMILTONIAN
	3. GROUND STATES OF EFFECTIVE HAMILTONIAN
	4. STABILITY OF GROUND STATES OF THE ASCHHUM
	5. CONCLUSIONS AND OPEN PROBLEMS
	1. GROUND STATES, M-POTENTIALS
	2. MISPRINTS IN THE PAPER citeDFF4cite
	

